❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.
Newly uncovered hack campaign in Telegram
The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.
Библиотека собеса по Data Science | вопросы с собеседований from jp